Những câu hỏi liên quan
%Hz@
Xem chi tiết
Trí Tiên亗
27 tháng 2 2020 lúc 11:05

Bài này áp dụng BĐT này nhé , với x,y > 0 ta có :

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ( Cách chứng minh thì chuyển vế quy đồng nhé )

Áp dụng vào bài toán ta có :

\(\frac{1}{2x+y+z}=\frac{1}{4}\left(\frac{4}{\left(x+y\right)+\left(z+x\right)}\right)\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{z+x}\right)=\frac{1}{16}\left(\frac{4}{x+y}+\frac{4}{z+x}\right)\)

                                                           \(\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\right)\)

\(\Rightarrow\frac{1}{2x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\right)\)

Tương tự ta có :

\(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)\)

Do đó : \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{1}{4}\left(x+y+z\right)=1\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{3}{4}\) (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
trần gia bảo
27 tháng 2 2020 lúc 11:13

Ta có: \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\le\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự: \(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\)

                  \(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\)

Cộng vế theo vế có: \(VT\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=1\)

Bình luận (0)
 Khách vãng lai đã xóa
Tran Le Khanh Linh
12 tháng 4 2020 lúc 16:19

cách 1:

với a,b>0 ta có: 4ab < (a+b)2 \(\Leftrightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)

dấu "=" xảy ra khi a=b

áp dụng kết quả của trên ta có:

\(\frac{1}{2x+y+z}\le\frac{1}{4}\left[\frac{1}{2x}+\frac{1}{4}\left(\frac{1}{y}+\frac{1}{z}\right)\right]=\frac{1}{8}\left(\frac{1}{x}+\frac{1}{2y}+\frac{1}{z}\right)\left(1\right)\)

tương tự \(\hept{\begin{cases}\frac{1}{x+2y+z}\le\frac{1}{4}\left[\frac{1}{2y}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{z}\right)\right]=\frac{1}{8}\left(\frac{1}{y}+\frac{1}{2x}+\frac{1}{2z}\right)\left(2\right)\\\frac{1}{x+y+2z}\le\frac{1}{4}\left[\frac{1}{2z}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\right]=\frac{1}{8}\left(\frac{1}{z}+\frac{1}{2y}+\frac{2}{2x}\right)\left(3\right)\end{cases}}\)

vậy \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)

thấy trong các bđt (1)(2)(3) thì dấu "=" xảy ra khi x=y=z=\(\frac{3}{4}\)

cách 2:

áp dụng bđt 1\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)và bđt Cosi cho các số dương ta có:

\(2x+y+z=\left(x+y\right)+\left(x+z\right)\ge2\left(\sqrt{xy}+\sqrt{xyz}\right)\)

do đó: \(\frac{1}{2x+y+z}\le\frac{1}{2}\left(\frac{1}{\sqrt{xy}+\sqrt{xz}}\right)\le\frac{1}{8}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{xz}}\right)\)

tương tự: \(\hept{\begin{cases}\frac{1}{2x+y+z}\le\frac{1}{8}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}\right)\\\frac{1}{x+y+2z}\le\frac{1}{8}\left(\frac{1}{\sqrt{xz}}+\frac{1}{\sqrt{yz}}\right)\end{cases}}\)

cộng theo từng vế 3 bđt trên ta được:

\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\left(3\right)\)

từ (3), (4) => đpcm

cách 3:

mặt khác từ bđt Cosi cho 4 số dương hoặc bđt Bunhiacopsky

\(\left(x+x+y+z\right)\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge4\sqrt[4]{x^2\cdot yz}\ge4\sqrt[4]{\frac{1}{x^2yz}}=16\)

\(\Rightarrow\frac{1}{2x+y+z}\le\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

tương tự \(\hept{\begin{cases}\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\\\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\end{cases}}\)

cộng 3 vế của bđt trên ta được đpcm

Bình luận (0)
 Khách vãng lai đã xóa
tuấn anh lê
Xem chi tiết
Bùi Thế Hào
14 tháng 3 2018 lúc 16:45

Theo Cauche có: 

\(\left(x+x+y+z\right)\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge4\sqrt[4]{x^2yz}.4\sqrt[4]{\frac{1}{x^2.y.z}}=16\)

=> \(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{16}{2x+y+z}\). Tương tự có: 

\(\frac{2}{y}+\frac{1}{x}+\frac{1}{z}\ge\frac{16}{x+2y+z}\) và \(\frac{2}{z}+\frac{1}{y}+\frac{1}{x}\ge\frac{16}{x+y+2z}\)

=> \(16.\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le\frac{2}{x}+\frac{1}{y}+\frac{1}{z}+\frac{2}{y}+\frac{1}{x}+\frac{1}{z}+\frac{2}{z}+\frac{1}{x}+\frac{1}{y}\)

\(16.\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le4.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=4.4=16\)

Chia cả 2 vế cho 16 => ĐPCM

Bình luận (0)
肖赵战颖
Xem chi tiết
Nguyễn Thu Thủy
Xem chi tiết
Dream Boy
Xem chi tiết
Pain zEd kAmi
16 tháng 9 2018 lúc 8:37

Với 2 số dương bất kì: ( 1 )

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)Vì x và y dương nên \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\forall x;y\)

Áp dụng ( 1 ): \(\frac{4}{2x+y+z}=\frac{4}{\left(x+y\right)+\left(x+z\right)}\le\frac{1}{x+y}+\frac{1}{x+z}\)

Mà: \(\frac{1}{x+y}+\frac{1}{x+z}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}\right)=\frac{1}{4}\)\(=\frac{1}{4}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Nên: \(\frac{1}{2x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự ta có: \(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\)

Và \(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Cộng vế với vế các bất đẳng thức kết hợp với điều kiện \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\) nên ta có đpcm

Bình luận (0)
Đinh Đức Hùng
Xem chi tiết
Chirikatoji
10 tháng 12 2017 lúc 21:23

bạn ơi hình như có chút sai đề

Bình luận (0)
hoàng quốc sơn
Xem chi tiết
Đỗ Thị Ngọc Trinh
16 tháng 1 2016 lúc 17:19

chtt

Bình luận (0)
hoàng quốc sơn
16 tháng 1 2016 lúc 20:31

Nhanh to cho card 20

 

Bình luận (0)
Vinh Lê Thành
Xem chi tiết
Dương Chí Thắng
Xem chi tiết
Bui Huyen
28 tháng 7 2019 lúc 22:33

\(\hept{\begin{cases}\frac{1}{2x+y+z}=\frac{1}{x+y+x+z}\\\frac{1}{2z+y+x}=\frac{1}{z+y+x+z}\\\frac{1}{2y+x+z}=\frac{1}{x+y+y+z}\end{cases}}\)

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\hept{\begin{cases}\frac{1}{x+y+x+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\\\frac{1}{z+y+x+z}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\\\frac{1}{x+y+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\end{cases}}\)

\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{2y+z+x}+\frac{1}{2z+x+y}\le\frac{1}{2}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

\(\hept{\begin{cases}\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\\\frac{1}{x+z}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{z}\right)\\\frac{1}{z+y}\le\frac{1}{4}\left(\frac{1}{z}+\frac{1}{y}\right)\end{cases}}\Rightarrow\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{2z+x+y}+\frac{1}{2y+z+x}\le\frac{1}{2}\cdot\frac{1}{2}\cdot4=1\)

\("="\Leftrightarrow x=y=z=0,75\)

Bình luận (0)
Dương Chí Thắng
3 tháng 8 2019 lúc 20:34

bùi huyền ơi làm sao để k cho bạn được

Bình luận (0)
Dương Chí Thắng
3 tháng 8 2019 lúc 20:34

làm sao để k cho bạn vậy

Bình luận (0)